Scudo Secondary Caching

Fernando Salas

frsalas513@gmail.com

Scudo Background

e LLVM Hardened Memory Allocator
Primary Allocator:
e Smaller Allocations (<65KB Android Config)

Secondary Allocator:

e Larger Allocations (>65KB Android Config)
e mmap() based
e Uses cache and Linked-List of In-Use memory blocks

Optimizing Caching Scheme

e Secondary allocator called less frequently
Returns a cached block or calls mmap() to provide memory to
user/process

e Previous Scheme: First-Fit
o Returns first available cached block (leading to potentially large amounts of
fragmentation)
e Goal: Reduce fragmentation (Best-Fit)
o Return the smallest block that satisfies the requested size
e Using ADB (Android Debug Bridge) tools and testing we were able to compare results
and decide which direction to go

First-Fit
malloc(75KB);

N

181KB Fragmented

256KB

100KB

80KB

100KB

128KB

100KB

80KB

80KB

100KB

Best-Fit

malloc(75KB);

5KB Fragmented

T~ N N N N N N N N

256KB

100KB

80KB

100KB

128KB

100KB

80KB

80KB

100KB

Best-Fit

e (Caused a slowdown but clearly improved fragmentation

Stats: MapAllocator: allocated 10829 times (6@@3792K), freed 10829 times (6@@3792K), remains @ (@K) max 36M

Stats: MapAllocatorCache: EntriesCount: 32, MaxEntriesCount: 32, MaxEntrySize: 2097152
Stats: RetrievalStats: Wasted: 42533K, SuccessRate: 10183/10441 (97.53%)

-- Average Operation Time -- -- Name (# of Calls) --

83.8(ns) Optimal-Fit Retrieve (10441)
Example output of adb logcat for a camera memory-trace

e Nano-seconds is still plenty fast for most of scudo’s purposes
e Best-Fit has a large chance to traverse through all the cached-blocks for each
allocation

Compromise: Optimal-Fit

e Slight slowdown from returning the first available block

e Reduced Fragmentation from setting an upper-bound on allowed
Fragmentation

e Upper-Bound set to: 10% of requested size

e |mmediate return if Fragmented Bytes <= the upper-bound

e Upper-Bound value could potentially be easily changed to accommodate
for different circumstances/configurations

malloc(75KB); *5KB Fragmented*

" N N\

256KB 100KB | 80KB | 100KB 128KB 100KB | 80KB | 80KB | 100KB

Conclusion

e We are now reducing Fragmentation and have some insight about how the

environment of the Secondary allocator is behaving.
o Less calls of mmap()

e Testing revealed the variation of processes and devices memory needs
e Configurable Upper-Bound fragmentation would accommodate different
needs

e Using stats dumping would also help users realize their own memory needs

Example output of getStats():

Stats: MapAllocator: allocated 2142 times (313084K), freed 2078 times (298100K), remains 64 (14984K) max 9M, Fragmented 512K
Stats: MapAllocatorCache: EntriesCount: 21, MaxEntriesCount: 32, MaxEntrySize: 2097152
Stats: CacheRetrievalStats: SuccessRate: 2002/2123 (94.30%)

StartBlockAddress: 0x7f6a67c00@, EndBlockAddress: @x7f6a68d00@, BlockSize: 69632
StartBlockAddress: 0x7ac47d2000, EndBlockAddress: @0x7ac48d3000, BlockSize: 1052672 [R]
StartBlockAddress: 0x7ca75e9000, EndBlockAddress: @x7ca75ff@0@, BlockSize: 90112
StartBlockAddress: @x7ac4cel@0@, EndBlockAddress: @x7ac4de200@, BlockSize: 1052672 [R]
StartBlockAddress: @x7ac49d8000, EndBlockAddress: @x7ac4ad900@, BlockSize: 1052672 [R]
StartBlockAddress: @x7ac4adb@@@, EndBlockAddress: @x7ac4bdc@@®, BlockSize: 1052672 [R]
StartBlockAddress: @x7c944df000, EndBlockAddress: @x7c9452e@00, BlockSize: 323584 [R]
StartBlockAddress: ©@x7cadlab@@@, EndBlockAddress: @Ox7cadle700@, BlockSize: 245760 [R]
StartBlockAddress: @x7ac4bde@@@, EndBlockAddress: @x7ac4cdf@@®, BlockSize: 1052672 [R]
StartBlockAddress: @x7ac48d5000, EndBlockAddress: ©0x7ac49d6000@, BlockSize: 1052672 [R]
StartBlockAddress: ©@x7ac45cc@0@, EndBlockAddress: @x7ac46cd@@@, BlockSize: 1052672 [R]
StartBlockAddress: @x7ac46cf@0@, EndBlockAddress: @x7ac47d000@, BlockSize: 1052672 [R]
StartBlockAddress: @x7bb@591000, EndBlockAddress: 0x7bb@5ff@0@, BlockSize: 450560 [R]
StartBlockAddress: 0x7f6daa500@, EndBlockAddress: @0x7f6dac400@, BlockSize: 126976 [R]
StartBlockAddress: 0x7ca4026000, EndBlockAddress: ©0x7cad4054000, BlockSize: 188416 [R]
StartBlockAddress: @x7cad3ea®@®@, EndBlockAddress: @x7cad40200@, BlockSize: 98304
StartBlockAddress: 0x7b7c308000, EndBlockAddress: @0x7b7c396000, BlockSize: 581632 [R]
StartBlockAddress: 0x7c9cc@6000, EndBlockAddress: @0x7c¢9cc4h@0@, BlockSize: 282624 [R]
StartBlockAddress: @x7f6dbfc@0@, EndBlockAddress: @x7f6dc1b@@@, BlockSize: 126976 [R]
StartBlockAddress: @x7c96461000, EndBlockAddress: ©0x7c964a2000, BlockSize: 266240 [R]
StartBlockAddress: 0x7c9fe@c00@, EndBlockAddress: @0x7c9fe23000, BlockSize: 94208 [R]
Stats: Quarantine: batches: @; bytes: @ (user: 0); chunks: @ (capacity: @); @% chunks used; @% memory overhead
Quarantine limits: global: @K; thread local: @K

Thank You!

Acknowledgements:

Chia-Hung Duan
Christopher Ferris

References:

https://reviews.llvm.ora/D157155
https://android-review.googlesource.com/c/platform/external/scudo/+/2687661
https://source.android.com/docs/security/test/scudo
https://llvm.org/docs/ScudoHardenedAllocator.html

frsalas513@gmail.com

https://reviews.llvm.org/D157155
https://android-review.googlesource.com/c/platform/external/scudo/+/2687661
https://source.android.com/docs/security/test/scudo
https://llvm.org/docs/ScudoHardenedAllocator.html

